Indian Statistical Institute Mid-Semestral Examination Differential Geometry - BMath III

Max Marks: 40 Time: 180 minutes.

Give proper justification(s) for your answers.

(1) Define the notion of an integral curve of a vector field.

(a) Show that the maximal integral curve of the vector field \mathbb{X} on \mathbb{R}^2 defined by

$$X(x_1, x_2) = (x_1, x_2, 1 + x_1^2, 0)$$

is not defined on the whole of \mathbb{R} . (b) Let $a,b,c\in\mathbb{R}$ be such that $ac-b^2>0$. Show that the maximum and minimum values of the function $f(x_1,x_2)=x_1^2+x_2^2$ on the ellipse $ax_1^2+2bx_1x_2+cx_2^2=1$ are of the form $\frac{1}{\lambda_1}$ and $\frac{1}{\lambda_2}$ where λ_1,λ_2 are the eigenvalues of the matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$. [2+4+4]

(2) Define the terms: orientation of a n-surface, Gauss map of a n-surface, spherical image of a n-surface.

(a) Show that any connected *n*-surface has exactly two orientations.

(b) Given a subset $A = \{a_1, a_2, a_3\} \subseteq S^2$, construct a 2-surface S in \mathbb{R}^3 whose spherical image is A. [2+5+7]

(3) Define the notion of a geodesic in a n-surface S.

(a) Show that geodesics have constant speed. Give an example to show that a constant speed parametrized curve need not be a geodesic.

(b) Let S denote the cylinder $x_1^2 + x_2^2 = 1$ in \mathbb{R}^3 . Show that α is a geodesic of S if and only if α is of the form

$$\alpha(t) = (\cos(at+b), \sin(at+b), ct+d)$$

for some $a, b, c, d \in \mathbb{R}$.

[2+4+10]